Breaking it Down: Cotton’s Biodegradability in Various Environments
With hundreds of easily searchable resources, we're your go-to textile tool for discovering what's possible with cotton.

cottonworks.com
Type your questions in the Q&A window at any time during the webinar.

Find the presentation slides and other resources at cottonworks.com at the conclusion of the webinar.

Please turn off your pop-up blocker to participate in this webinar.

Information presented is from several sources. Some information is Cotton Incorporated’s interpretation. No responsibility is assumed for the use of this information and no express or implied warranties nor guarantees are made.
Breaking it Down: Cotton’s Biodegradability in Various Environments
Biodegradability of Cotton and Polyester in Soil
Disposing of old clothes...

What’s the problem?

- The average American discards about 70 pounds of clothing per year\(^1\)
- Of that only about 10 pounds are donated
- The remaining 60 pounds end up in landfills
 - 327 million people in the US
 - 20 billion pounds of textile waste goes to US landfills each year

Recycling Options

- Donation
 - Charities
 - Retailers
- Municipal recycling programs
 - Sort through the waste
 - Creates different streams
 - Convenience
What happens to fabrics in a compost pile?

- Today’s landfills are good at preserving things.
- Little air, water, sunlight and bacteria available.
- How well would natural soil break down garments?
- Could back-yard composters convert their fabrics to soil?
Three biodegradation methods have been explored...

- ASTM D5988-03
- Composting in winrows at Cornell University
- ASTM D6400 Compostable Product Test
 - Controlled temperature, moisture level, carbon:nitrogen ratio
 - Compost bin was used
Design of Trials One and Two

ASTM D5988-03 and Composting

- Fabrics Evaluated
 - 100% cotton jersey, scoured and bleached, no finish
 - 100% cotton jersey, scoured and bleached, softener only
 - 100% cotton jersey, scoured and bleached, resin plus softener
 - 100% polyester shirt

- Fabrics were laundered 30 times before testing
 - D5988-03 measures the generation of CO$_2$
 - In composting, weight loss is measured
 - Fabrics were exposed for 90 days
Results of ASTM D5988-03

% converted to CO2

- Cotton NF
- Cotton S
- Cotton R
- Polyester
Degradation of Fibers in Compost

Cornell University composting facility

% weight loss

Cotton NF | Cotton S | Cotton R | Polyester

%weight loss
Degradation in Soil

0 Days

90 Days

Cotton, NF

Cotton, Softener

Cotton, Resin

Polyester
Design of Trial Three

ASTM D6400 (Biodegradability Testing in Compost)

- Fabrics Evaluated
 - 100% cotton jersey, scoured and bleached, softener only
 - 100% cotton jersey, scoured and dyed black, plus softener
 - 100% recycled polyester shirt

- Fabrics were laundered 30 times before testing
- Carbon-to-nitrogen ratio of 30:1
- Moisture content 45–50%
- Fabrics were exposed for 12 weeks (84 days)
Recycled Polyester T-Shirt

Cotton Jersey, Bleached, Softened

Cotton Jersey, Dyed Black, Softened

Week 0 Compost Bin
Recycled Polyester T-Shirt

Cotton Jersey, Bleached, Softened

Cotton Jersey, Dyed Black, Softened

Week 6 Compost Bin

Week 6
Recycled Polyester T-Shirt

Cotton Jersey, Bleached, Softened

Cotton Jersey, Dyed Black, Softened

Week 12 Compost Bin

Week 12
Biodegradability of Wet Wipes
Cotton Nonwoven Degradation in Soil
Methodology

- ASTM D-6400
 - Standard Specification for Labeling of Plastics Designed to be Aerobically Composted in Municipal or Industrial Facilities
- Materials tested
 - Spunlaced nonwovens
 - 100% virgin cotton
 - 100% virgin cleaned cotton
 - 100% purified cotton
 - 55% purified cotton/45% PP
Methodology

- Samples were prepared, weighed, and placed into an active compost vessel.
- Every 2 weeks, samples were removed from the compost vessel, dried, weighed, and photographed.
- Average percent biodegradability was calculated for each sample.
- Biodegradability was accomplished at 90+% mass loss.
- 100% cotton nonwovens biodegraded 90+% within 4 weeks.
Nonwoven Results
100% Virgin Cotton Composting (ASTM D6400)

Week 0

Week 2

Week 4

Sample #4

% BIODEGRADATION

TIME IN WEEKS

0 10 20 30 40 50 60 70 80 90 100

2 4

100

28

92
100% Virgin Cleaned Cotton Composting (ASTM D6400)

Sample #3
100% Purified Cotton Composting (ASTM D6400)

Week 0

Week 2

Week 4

Sample #9

% BIODEGRADATION

TIME IN WEEKS

0 10 20 30 40 50 60 70 80 90 100

Week 0

Week 2

Week 4

Sample #9

Composting (ASTM D6400)
55% Purified Cotton/45% PP
Composting (ASTM D6400)

Week 0 | Week 2 | Week 4 | Week 6

% Biodegradation

<table>
<thead>
<tr>
<th>TIME IN WEEKS</th>
<th>0</th>
<th>2</th>
<th>4</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample #1</td>
<td>14</td>
<td>42</td>
<td>50</td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Cotton wipes biodegrade quickly in a composting container
- 100% cotton: 92 – 95% in four weeks
- Blend: Cotton biodegraded; Polypropylene did not
Biodegradability of Wet Wipes

Flushability
Methodology

- Followed Guidelines for Assessing the Flushability of Nonwoven Disposable Products
 - INDA/EDANA
 - Developed as standards for the industry to produce wet wipes that can be marketed as flushable to consumers
- 2 Test Methods:
 - Aerobic Biodisintegration (FG 505)
 - Anaerobic Biodisintegration (FG 506)
- Materials Tested
 - 60 gsm nonwovens measured at approximately 2 grams per sample
Results
Virgin Cotton
Aerobic Biodisintegration (Sewer System)

<table>
<thead>
<tr>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Weight (g)</td>
<td>Final Weight (g)</td>
<td>Mass Loss</td>
</tr>
<tr>
<td>97%</td>
<td>100%</td>
<td>97%</td>
</tr>
<tr>
<td>97%</td>
<td>100%</td>
<td>97%</td>
</tr>
</tbody>
</table>

Minimum Required Mass Loss: 95%
Average Mass Loss: 98%

28 Day Test
Purified Cotton
Aerobic Biodisintegration (Sewer System)

28 Day Test
Minimum required mass loss: 95%
Average mass loss: 100%
Virgin Cotton
Anaerobic Biodisintegration (Septic System)

Minimum required mass loss: **95%**
Average mass loss: **74%**

28 Day Test

<table>
<thead>
<tr>
<th>Sample</th>
<th>Initial Weight (g)</th>
<th>Final Weight (g) After 28 Days</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>2.0</td>
<td>0.8</td>
</tr>
<tr>
<td>#2</td>
<td>2.0</td>
<td>0.6</td>
</tr>
<tr>
<td>#3</td>
<td>2.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

70% Mass Loss

85% Mass Loss

68% Mass Loss
Purified Cotton

Anaerobic Biodisintegration (Septic System)

<table>
<thead>
<tr>
<th>Sample #1</th>
<th>Sample #2</th>
<th>Sample #3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial Weight (g)</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Final Weight (g)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

28 Day Test

- Minimum required mass loss: **95%**
- Average mass loss: **100%**

![Graph showing mass loss over 28 days](image.png)
Conclusions

- Similar results to the composting test
- Purified cotton biodegraded faster than the virgin cotton
- Cotton – An example of the cycle of nature
Thank You
Breaking it Down: Cotton’s Biodegradability in Various Environments
Interested in sharing this content with a colleague?

Create a free account at cottonworks.com and find the presentation on the Cotton Sustainability page.
Breaking it Down: Cotton's Biodegradability in Various Environments

Submit all final questions now using the Q&A box on your screen.

Please take our brief survey on today's presentation prior to exiting the webinar.